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Abstract—This paper considers a linear autonomous differential–difference system of neutral
type with lumped delays. For such systems, an output-feedback controller is proposed that
simultaneously solves the finite stabilization (complete damping) problem and ensures a finite
(albeit, nonarbitrary) spectrum of the closed loop system. For this controller, an existence
criterion is derived and a constructive design method is presented. The distinctive feature of
the controller is the absence of any distributed delay in the structure, which is important for
its practical implementation. The results are illustrated by a numerical example.
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1. INTRODUCTION

Systems of differential equations with delay are used to model many processes in ecology,
medicine, electrodynamics, deformed solid mechanics, engineering, economics, and other fields [1–3].
On the one hand, considering delay in a model improves reliability in describing real phenomena
and predicting the behavior of the corresponding systems. On the other hand, incorporating pro-
cess characteristics at previous time instants into the evolution law of the system increases its
complexity. In this connection, quite a lot of research works have been devoted to the general
theory of delayed systems and their applications (for example, see the Introduction in [3]). This
paper addresses the issue of the finite stabilization of linear neutral systems with lumped delays in
the state and control variables.

Stabilization problems for delayed systems are rather difficult [4–11] and have not been fully
investigated to date. One possible approach is based on calculating the unstable eigenvalues of
the spectrum and then replacing them with suitable numbers. However, finding such values is a
nontrivial task. Therefore, a more universal method is to assign a finite spectrum to a closed loop
system [12–15], usually consisting of numbers with negative real parts.

Generally speaking, the set of eigenvalues of a linear system with aftereffect is infinite, so it
seems natural to control all eigenvalues of such a system by tuning the coefficients of its character-
istic quasipolynomial (the problem of modal control [16–19]). Another line of stabilization-related
research consists [14, 20–22] in designing a feedback controller that ensures, after a finite time, zero
values for all components of the state vector of the the original open-loop system (the finite sta-
bilization problem [23, 24], in other words, providing the complete 0-controllability by a feedback
controller). An original idea for solving the finite stabilization problem is to introduce a feedback
loop so that the closed loop system becomes a system with a finite spectrum pointwise degenerate

1



2 KHARTOVSKII, URBAN

in the directions corresponding to the solution components of the original system. Such ideas were
further developed to systems of neutral type [15, 17, 21, 22]; a systematic presentation of these
results can be found in the monograph [25].

In this paper, a finite stabilization output-feedback controller is designed for linear autonomous
systems of neutral type with lumped commensurate delays. This is an output-feedback controller
based on measurements of an observed signal that ensures both finite stabilization and a finite
spectrum. In the case of a delayed system with scalar input and output, such a problem with
the choice of any finite spectrum was studied in [24] and, for multi-input neutral systems, in [26].
A disadvantage of the approach described in [26] is the presence of distributed delay terms in
the controller, although the original plant has only a lumped delay. During practical implemen-
tation, the integrals containing a distributed delay are replaced by finite sums, which may lead
to undesirable consequences even when using high-precision quadrature formulas (e.g., the loss of
stability) [27, 28]. The fundamental difference between this paper and [26] is the new structure of
the controller, which contains purely lumped commensurate delays. The idea is to construct a dis-
continuous feedback defined by two controller loops (inner and outer). The inner loop “smoothens”
the solution over time by using a feedback law that transforms the original system into a delayed
one. After the solution reaches the necessary smoothness, the second loop is activated to ensure
the pointwise degeneracy of the closed loop system in the directions corresponding to all solution
components of the original (open-loop) system.

2. PROBLEM STATEMENT

Let the plant under consideration be described by a linear autonomous differential–difference
system of neutral type with lumped commensurate delays:

ẋ(t)−
m∑
i=1

Diẋ(t− ih) =
m∑
i=0

(
Aix(t− ih) +Biu(t− ih)

)
, t > 0,

y(t) =
m∑
i=0

Cix(t− ih), t � 0,

where x is the state vector of this system, u is the control input, y is the observed output, and
h = const > 0; Di ∈ R

n×n, Ai ∈ R
n×n, Bi ∈ R

n×r, and Ci ∈ R
l×n.

We introduce the following notations: Ii ∈ R
i×i is an identity matrix, and λh is the shift operator

defined by the rule (λh)
kf(t) = f(t− kh), k ∈ N, for a given value h > 0 and an arbitrary function f .

With the polynomial matrices

D(λ) =
m∑
i=1

Diλ
i, A(λ) =

m∑
i=0

Aiλ
i, C(λ) =

m∑
i=0

Ciλ
i, B(λ) =

m∑
i=0

Biλ
i,

the original plant can be written in the operator form(
In −D(λh)

)
ẋ(t) = A(λh)x(t) +B(λh)u(t), t > 0, (1)

y(t) = C(λh)x(t), t � 0. (2)

The solution of equation (1) is uniquely determined by the initial condition

x(t) = ϕ(t), u(t) ≡ 0, t ∈ [−mh, 0]. (3)

Suppose that ϕ ∈ C̃1
(
[−mh, 0],Rn

)
is an unknown function, where C̃k(·) indicates the class of k − 1

times continuously differentiable functions with a piecewise continuous derivative of order k. The
control input u is a piecewise continuous function.
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INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 3

Let Rn×m[p, λ]
(
R
n×m[λ]

)
be the set of all matrices of dimensions n×m whose elements represent

polynomials of the variables p, λ (λ) (if m = n = 1, the superscript will be omitted), where p
D
=

d/dt is the differentiation operator.

We define an output-feedback controller of the form

u(t) = U11(pD , λh)y(t) + U12(pD , λh)x̃(t),

˙̃x(t) = U21(pD
, λh)y(t) + U22(pD

, λh)x̃(t), t > t0.
(4)

Here, x̃ ∈ R
ñ is an auxiliary variable, t0 > 0 is some number chosen below (u(t) ≡ 0, t � t0),

U11(p, λ) ∈ R
r×l[p, λ], U12(p, λ) ∈ R

r×ñ[p, λ], U21(p, λ) ∈ R
ñ×l[p, λ], and U22(p, λ) ∈ R

ñ×ñ[p, λ].
For implementing the controller (4), we specify the initial condition

x̃(t) = ϕ̃(t), t ∈ [t0 − h̃, t0]
(
h̃ = α̃h, α̃ = max{degλ Uk2(p, λ), k = 1, 2}

)
, (5)

where ϕ̃ ∈ C̃p̃([t0 − h̃, t0],R
ñ) is any function, p̃ = max{degpUk2(p, λ), k = 1, 2}, and the notation

degλ f(λ) means the degree of a polynomial (including a matrix one).

The goal of this paper is to design the controller (4) ensuring the following conditions:

(a) Regardless of the initial functions ϕ in (3) and ϕ̃ in (5), there exists a number t1 > 0 such
that the vector component x of the solution vector col[x, x̃] of the closed loop system (1), (4) is
zero starting from a time instant t1, i.e.,

x(t) ≡ 0, t � t1. (6)

(b) The closed loop system (1), (4) is a linear autonomous system of neutral type with a finite
spectrum.

Remark 1. (a) By a linear autonomous homogeneous neutral system with commensurate delays
we mean a linear autonomous system Υ(p

D
, λh)x(t) = 0, Υ(p, λ) ∈ R

n×n[p, λ] with a characteristic
quasipolynomial of the form

∣∣Υ(p, λ)
∣∣ = ∑ν

i=0 p
id̃i(λ), where ν = n degpΥ(p, λ), d̃i(λ) are polynomi-

als, d̃ν(0) = 1, and the symbol | · | stands for the determinant of a matrix. By introducing auxiliary
variables, such a system can be rewritten as (1). Linear autonomous differential–difference systems
with delay (d̃ν(λ) ≡ 1) and ordinary systems are treated as a special case of neutral systems.

(b) Since Uij(p, λ) are polynomial matrices, system (1), (4) has only lumped commensurate
delays.

Definition 1. A controller (4) implementing conditions (a) and (b) will be called a finite stabi-
lization output-feedback controller.

Let us denote W (p, λ) = p
(
In −D(λ)

)
−A(λ).

Lemma 1. Assume that for system (1), (2), there exists a finite stabilization output-feedback
controller (4). Then

rank
[
W (p, e−ph), B(e−ph)

]
= n ∀p ∈ C, (7)

rank
[
In −D(λ), B(λ)

]
= n ∀λ ∈ C, (8)

rank

[
W (p, e−ph)

C(e−ph)

]
= n ∀p ∈ C, (9)

rank

[
In −D(λ)

C(λ)

]
= n ∀λ ∈ C. (10)

The proof is postponed to the Appendix.
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3. THE MAIN RESULT

Now we formulate the main result of this paper.

Theorem 1. For system (1), (2) there exists a finite stabilization output-feedback controller (4)
iff conditions (7)–(10) are valid.

Proof. Necessity follows from Lemma 1. Sufficiency. The sufficient nature of the conditions of
Theorem 1 will be established in two parts. In the first part, we design a controller implementable
under the condition that the output y(t) is a (ρ0 − 1) times continuously differentiable function with
a piecewise continuous derivative of order ρ0, where the number ρ0 is determined when constructing
the controller (see Remark 2). To satisfy the above condition for the function y(t), we suppose
that ϕ ∈ C̃ρ0 . The second part of the proof considers the general case ϕ ∈ C̃1 and ρ0 > 1, i.e., the
smoothness of the initial function does not ensure the same property for the output y(t), which is
described above.

3.1. The Case ϕ ∈ C̃ρ0

To prove the sufficiency of the theorem’s conditions, we design the controller (4). The design
process will consist of the following steps: 1) constructing a finite stabilization state-feedback
controller; 2) constructing a finite observer; 3) designing a finite stabilization output-feedback
controller based on the parameters of the controller and observer constructed at the previous steps.

1. Constructing a finite stabilization state-feedback controller

Due to (7) and (8), for system (1), there exists [22; 25, p. 358] a controller (further called a
finite stabilization state-feedback controller) of the form

u(t) = L00(pD , λh)x(t) + L01(pD , λh)x̄(t),

˙̄x(t) = L10(pD , λh)x(t) + L11(pD , λh)x̄(t), t > 0,
(11)

where x̄ ∈ R
n̄ is an auxiliary variable, L00(p, λ) ∈ R

r×n[p, λ], L01(p, λ) ∈ R
r×n̄[p, λ], L10(p, λ) ∈

R
n̄×n[p, λ], L11(p, λ) ∈ R

n̄×n̄[p, λ], and degpLij(p, λ) = 1, with the following conditions:

(1) It is possible to find a number t̄1 > 0 such that, regardless of the initial condition of sys-
tem (1), (11), we have

x(t) ≡ 0, t � t̄1. (12)

(2) System (1), (11) is a linear autonomous neutral system with lumped commensurate delays
and a finite (albeit, not a priori given) spectrum. Since the spectrum of the closed loop system is
finite, the determinant of the characteristic matrix of this system will be a polynomial, i.e.,∣∣W0(p, λ)

∣∣ = d0(p). (13)

Here, d0(p) is some polynomial and W0(p, e
−ph) is the characteristic matrix of system (1), (11)

given by

W0(p, λ) =

[
W (p, λ)−B(λ)L00(p, λ) −B(λ)L01(p, λ)

−L10(p, λ) pIn̄ − L11(p, λ)

]
. (14)

We present the idea of constructing the controller (11) [22; 25, p. 358]. Conditions (7) and (8)
are necessary and sufficient for the existence of matrices Lij(p, λ) in (11) such that the system
corresponding to the matrix (14) is pointwise degenerate in the directions ēi, i = 1, n + n̄− 1,
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INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 5

where ēi is the ith column of the matrix In+n̄. This implies [29] the existence of a time instant t̄1
such that ē′icol[x(t), x̄(t)] ≡ 0, t � t̄1, i = 1, n + n̄− 1. (The prime ′ indicates transpose.) The latter
identity ensures (12). The construction procedure for the matrices Lij(p, λ) from (11) was described
in [22; 25, p. 358].

2. Constructing a finite observer

By a finite observer we mean [30, 31] a linear autonomous delayed differential system dependent
on the output (3) with lumped commensurate delays, a finite spectrum, and the output v that has
the following property: there exists a time instant t∗ > 0 starting from which, regardless of the
initial conditions of the observer and equation (1), the observer’s output v is equal to the solution
x of equation (1) generating the output y, i.e., x(t) = v(t), t � t∗.

As was shown in [30, 31], conditions (9) and (10) are necessary and sufficient for the existence
of a finite observer. In this case, the observer can be constructed both as a system with distributed
delays and any given finite spectrum [30] and as a system without distributed delays with a finite
(albeit, not a priori given) spectrum [31]. For the goal of this paper, we will modify one observer
from [31].

By condition (10), there are matrices L1(λ) ∈ R
n×l[λ] and L2(λ) ∈ R

l×l[λ] such that [17, 22]

∣∣In+l −DL(λ)
∣∣ ≡ 1, DL(λ) =

[
D(λ) λL1(λ)

C(λ) λL2(λ)

]
. (15)

Let Π (λ) = [Πij (λ)]
2
i,j=1 be the adjoint matrix for the matrix (In+l −DL(λ)), where Π11(λ) ∈

R
n×n[λ], Π12(λ) ∈ R

n×l[λ], Π21(λ) ∈ R
l×n[λ], and Π22(λ) ∈ R

l×l[λ]. From (15) it follows that

Π(λ) =
(
In+l −DL(λ)

)−1
. We introduce the new function

χ(t) =
(
In −D(λh)

)
x(t), t � 0. (16)

Let χ̃(t)
(
χ̃ ∈ R

l, t ∈ R
)
be an arbitrary function. Applying the operator Π(λh) to the equality[

In −D(λh) −λhL1(λh)

−C(λh) Il − λhL2(λh)

] [
x(t)

χ̃(t)

]
=

[
χ(t)

−y(t)

]
+

[
−λhL1(λh)χ̃(t)(

Il − λhL2(λh)
)
χ̃(t)

]
, t � 0,

on the left allows establishing the relation

x(t) = Π11(λh)χ(t)−Π12(λh)y(t), t � γ2h, (17)

where γ2 = max{ν1j , j = 1, 2} and νij = degλΠij(λ). Next, let us denote

Ã(λ) = A(λ)Π11(λ), C̃(λ) =

[
C(λ)Π11(λ)(

In −D(λ)
)
Π11(λ)− In

]
,

ỹ(t) = Cy(λh)y(t), t � γ3h, Cy(λ) =

[
Il + C(λ)Π12(λ)(
In −D(λ)

)
Π12(λ)

]
, γ3 = m+ γ2.

Based on (16) and (17), system (1), (2) can be written as an inhomogeneous linear autonomous
differential–difference system with commensurate delays and the known output ỹ:

χ̇(t) = Ã(λh)χ(t) +B(λh)u(t)−A(λh)Π12(λh)y(t), t > γ3h, (18)

ỹ(t) = C̃(λh)χ(t), t � γ3h. (19)
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In view of (9), system (18), (19) satisfies the condition [30, 31]

rank

⎡⎣ pIn − Ã(e−ph)

C̃(e−ph)

⎤⎦ = n ∀p ∈ C. (20)

From (20) it follows that, for any i0 ∈ {1, . . . , n + l}, there exists a matrix Vi0(λ) ∈ R
n×(n+l)[λ] such

that

rank

[
pIn − Ã(e−ph)− Vi0(e

−ph)C̃(e−ph)

c̃i0(e
−ph)

]
= n ∀p ∈ C, (21)

where c̃i0(λ) is the i0th row of the matrix C̃(λ) [12]. Letting

ÃV (λ) = Ã(λ) + Vi0(λ)C̃(λ), K0(λ) = −A(λ)Π12(λh)− Vi0(λ)Cy(λ) (22)

and using equations (18), (19) and formulas (22), we replace system (1), (2) with

χ̇(t) = ÃV (λh)χ(t) +B(λh)u(t) +K0(λh)y(t), t > t̃1,

ỹi0(t) = c̃i0(λh)χ(t), t � t̃1,
(23)

where ỹi0(t) is the i0th component of the vector ỹ, t̃1 = (ν0 + γ3)h, and ν0 = degλVi0(λ).

Due to condition (21), for system (23), there exists [31] a finite observer in the form of a finite-
spectrum system with purely lumped commensurate delays:

ż(t) = Q(pD , λh)z(t) +K(λh)y(t) +B(λh)u(t), t > t̃1; (24)

in addition, the output vz determining the estimate of the solution χ of system (23) is given by

vz(t) =
[
In, 0n×3

]
z(t), t � t̃1. (25)

Here, z = col [z1, z2], z1 ∈ R
n, z2 ∈ R

3, z1 = col[z11, . . . , z1n], z2 = col[z21, z22, z23], Q(p, λ) ∈
R
(n+3)×(n+3)[p, z], 0n×m denotes a zero matrix of dimensions n×m,

B(λ) =

[
B(λ)

03×r

]
, (26)

and the matrix K(λ) is found from the equality

K(λh)y(t) =

[
K0(λh)

03×l

]
y(t)− en+1ỹi0(t) =

([
K0(λh)

03×l

]
− en+1 ẽ

′
i0Cy(λh)

)
y(t), (27)

where ei and ẽi are the ith columns of the matrices In+3 and In+l, respectively. The matrix Q(p, λ)
is obtained by the scheme for constructing the finite observer matrix for a homogeneous delayed
system with scalar output [31]. The elements of the matrix Q(p, λ) are such that, after introducing
auxiliary variables, the homogeneous system (24) can be written in the standard form of a linear
autonomous delayed system (i.e., as Ẋ(t) = Σ(λh)X(t), where Σ(λ) is a polynomial matrix), and∣∣pIn+3 −Q(p, λ)

∣∣ = d1(p), (28)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 1 2025



INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 7

where d1(λ) is a polynomial. The matrix Q(p, λ) has the form

Q(p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ãV
11(λ) . . . ãV

1n(λ) g11(λ) g̃12 0
. . . . . . . . . . . . . . . . . .

ãV
n1(λ) . . . ãV

nn(λ) gn1(λ) g̃n2 0

c̃1i0(λ) . . . c̃ni0(λ) gn+11(p, λ) 1 0

0 . . . 0 λgn+21(p, λ) gn+22(p, λ) gn+2 3(λ)

0 . . . 0 λgn+31(λ) gn+32(λ) gn+3 3(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (29)

where ãV
ij(λ) are the elements of the matrix ÃV (λ), ÃV (λ) =

[
ãV
ij(λ)

]
n×n

, c̃ji0(λ) are the elements of

the vector c̃i0(λ), c̃i0(λ) =
[
c̃1i0(λ), . . . , c̃

n
i0
(λ)

]
, gij(p, λ) and gij(λ) are polynomials of the variables

p, λ and λ, respectively, and g̃i2 ∈ R.

Remark 2. Let ρ0 = max{degpgn+21(p, λ)− degp(gn+1 1(p, λ)− p), 1}. The component z21 de-

pends on the output y; therefore, z21 ∈ C̃ρ0
(
[t̃1,+∞),R

)
is a necessary condition for the term

λhgn+21(pD
, λh)z21 to exist in system (24). Hence, we require ỹi0 ∈ C̃ρ0

(
[t̃1,+∞),R

)
, which is

achieved by ϕ ∈ C̃ρ0
(
[−mh, 0],Rn

)
.

The components of the initial function z(t), t ∈ [t̃1 − h0, t̃1] (h0 specifies the delay of system (24)),
are taken smooth enough with a piecewise continuous senior derivative. (For each component, the
order of this derivative is determined by the maximum degree of the variable p of the corresponding
polynomials in the matrix (29).) In particular, it is possible to set z(t) ≡ 0, t ∈ [t0 − h0, t0].

Now we explain the idea of choosing the elements of the matrix Q(p, λ). Let ζ = vz − χ = z1 − χ
denote the estimation error and ζ̃ = col [ζ, z2]. In view of (29) and (25), the vector function ζ̃(t) is
given by the linear autonomous delayed system

˙̃
ζ(t) = Q(p

D
, λh)ζ̃(t), t > t̃1. (30)

The elements of the matrix Q(p, λ) are chosen so that system (30) is pointwise degenerate in the
directions corresponding to the first (n+ 2) columns of the matrix In+3, i.e., in the directions ei,
i = 1, n + 2. Hence, there exists a time instant t̃2 such that e′iζ̃(t) ≡ 0, t � t̃2, i = 1, n+ 2, regardless
of the initial function defining the solution of system (30). Consequently, the equality

χ(t) = vz(t), t � t̃2, (31)

holds for any initial functions of systems (1) and (24).

Finally, we estimate the solution of system (1), (2) using formula (17). With

v(t) = Π11(λh)
[
In, 0n×3

]
z(t)−Π12(λh)y(t), t � t̃1, (32)

from equality (31) and formula (17) it follows that

x(t) = v(t), t � t̃3, (33)

where t̃3 = t̃2 + ν11h. Thus, the finite observer (24), (32) has been constructed.

3. Designing a finite stabilization output-feedback controller

Let us derive expressions for the controller (4). To this end, the control inputs u(t) in equa-
tions (24) are replaced using the first formula of (11); the variable x in the resulting equation and
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the relations (11) is expressed through z, y using (33) and (32). Next, denoting the variables x̄, z
by x1, x2, respectively, we write the controller

u(t) = R01(pD , λh)x1(t) +R02(pD , λh)x2(t) +R00(pD , λh)y(t), (34)

ẋ1(t) = R11(pD , λh)x1(t) +R12(pD , λh)x2(t) +R10(pD , λh)y(t), (35)

ẋ2(t) = R22(pD
, λh)x2(t) +B(λh)

(
R01(pD

, λh)x1(t)

+R02(pD , λh)x2(t) +R00(pD , λh)y(t)
)
+K(λh)y(t), t > t0,

(36)

where xi ∈ R
ni, i = 1, 2 (n1 = n̄, n2 = n+ 3), are auxiliary variables, t0 = α0h, α0 =

max
{
degλ R00(p, λ) +m, degλ R10(p, λ),degλ K(λ)

}
, and

Ri0(p, λ) = −Li0(p, λ)Π12(λ), Ri1(p, λ) = Li1(p, λ),

Ri2(p, λ) = Li0(p, λ)Π11(λ)
[
In, 0n×3

]
, i = 0, 1, R22(p, λ) = Q(p, λ).

(37)

Letting x̃ = col[x1, x2], U11(p, λ) = R00(p, λ), U12(p, λ) = col[R01(p, λ), R02(p, λ)], and

U21(p, λ) =

[
R10(p, λ)

B(λ)R00(p, λ) +K(λ)

]
,

U22(p, λ) =

[
R11(p, λ) R12(p, λ)

B(λ)R01(p, λ) R22(p, λ) +B(λ)R02(p, λ)

]

allows representing the controller (34)–(36) in the form (4).

Let êi be the columns of the identity matrix In+n1+n2 .

Proposition 1. System (1), (2), (34)–(36) is pointwise degenerate in the directions êi, i =
1, n + n1 − 1, i = n+ n1 + 1, n+ n1 + n2 − 1, and the set of its spectral values and their multi-
plicity are determined by the roots of the polynomial d0(λ)d1(λ).

The proof is provided in the Appendix.

By Proposition 1, the constructed controller (34)–(36) is a finite stabilization output-feedback
controller. In the case ϕ ∈ C̃ρ0 , Theorem 1 is proved.

3.2. The Case ϕ ∈ C̃1

If ρ0 = 1 (see Remark 2), then the controller (34)–(36) is the desired finite stabilization controller
and the considerations of Section 3.2 become unnecessary. In what follows, we assume that ρ0 > 1.

The finite stabilization output-feedback controller will be constructed as a variable structure
(discontinuous feedback) controller [33] consisting of two serially connected loops: inner û and
outer v:

u(t) =

⎧⎪⎨⎪⎩
0, t � t5

û(t), t ∈ (t5, t6]

û(t) + v(t), t > t6.

(38)

The inner loop û ensures “smoothing” of the solution of the corresponding closed-loop system (1)
over time. Once the solution of the system is ρ0 − 1 times continuously differentiable and has a
piecewise continuous derivative of order ρ0, the outer loop v (34)–(36) is activated to ensure the
pointwise degeneracy of the closed loop system.
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Remark 3. In general, the loops û and v may contain auxiliary variables as their arguments.
Therefore, the full description of the finite stabilization output-feedback controller will be the
relation (38) supplemented by differential equations with initial conditions describing the behavior
of the auxiliary variables similar to the relations (4) and (5).

Let us impose a condition on the parameters of the homogeneous (u ≡ 0) system (1) under which
the smoothness of its solution will increase over time. We denote by ΠD(λ) the adjoint matrix for
the matrix

(
In −D(λ)

)
, m0 = degλ A(λ)ΠD(λ).

Lemma 2. Assume that the homogeneous (u ≡ 0) system (1) satisfies the condition∣∣In −D(λ)
∣∣ ≡ 1 (39)

and ϕ ∈ C̃1 in the initial condition (3). Then, for any ρ1 ∈ N and the solution x of system (1), we
have x ∈ C̃ρ1

(
[t4 + ρ1m0h,+∞),Rn

)
, where t4 = hdegλΠD(λ).

The proof is given in the Appendix.

Remark 4. The identity (39) is equivalent to the fact that the characteristic quasipolynomial of
system (1) has the form

∣∣W (p, λ)
∣∣ = pn +

∑n−1
i=0 pid̂i(λ), where d̂i(λ) are polynomials.

Remark 5. By the proof of Lemma 2 (see the Appendix), under (39), the homogeneous system
of neutral type is reduced, through a nondegenerate change of the variables, to a delayed system
whose solution will smoothen over time. Let us present other considerations showing that if (39)
holds for the homogeneous system of neutral type, the smoothness of the solution will increase
with t. For clarity, let D1 �= 0 and Di = 0, i = 2,m, i.e., system (1) has the form

ẋ(t)−D1ẋ(t− h) = A(λh)x(t), t > 0.

Then we obtain the following chain of equalities:

ẋ(t) = A(λh)x(t) +D1ẋ(t− h)

= A(λh)x(t) +D1

(
A(λh)x(t− h) +D1ẋ(t− 2h)

)
= . . . =

m̃−1∑
i=0

Di
1A(λh)x(t− ih) +Dm̃ẋ(t− m̃h), t > m̃h, m̃ ∈ N.

(40)

In this case (D1 �= 0 and Di = 0, i = 2,m), condition (39) becomes
∣∣In − λD1

∣∣ ≡ 1. This means

that the matrix D1 is nilpotent. Let m̃0 be the nilpotency index of the matrix D1, D
m̃0
1 = 0. Then

from (40) we obtain

ẋ(t) =
m̃0−1∑
i=0

Di
1A(λh)x(t− ih), t > m̃0h. (41)

System (41) is a delayed system with m(m̃0 − 1) commensurate delays. Therefore, for t > km̃0h,
k = 1, 2, . . . , the smoothness of the solution increases by k units.

Similar reasoning is valid for an arbitrary polynomial matrix D̃(λ). (Condition (39) as necessary
and sufficient for the nilpotency of some matrix at the derivatives of the solution containing delays
was discussed in [25, p. 218]; see Lemma 4.10.)

Lemma 3. Under conditions (8) and (10), there exist matrices Ũ11(λ) ∈ R
r×l[λ], Ũ12(λ) ∈

R
r×(r+n+l)[λ], Ũ21(λ) ∈ R

(n+r+l)×n[λ], and Ũ22(λ) ∈ R
(r+n+l)×(r+n+l)[λ] such that∣∣I2n+r+l − D̃(λ)
∣∣ ≡ 1,

D̃(λ) =

[
D(λ) +B(λ)Ũ11(λ)C(λ) B(λ)Ũ12(λ)

Ũ21(λ)C(λ) Ũ22(λ)

]
, D̃(0) = 0(2n+r+l)×(2n+r+l).

(42)

The proof is postponed to the Appendix.
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We define the inner loop controller by the relations

ũ(t) = pD Ũ11(λh)y(t) + pD Ũ12(λh)x3(t) + v1(t),

ẋ3(t) = p
D
Ũ21(λh)y(t) + p

D
Ũ22(λh)x3(t) + v2(t), t > t5,

(43)

where x3 ∈ R
n+r+l is an auxiliary variable, v = col[v1, v2], the matrices Ũij(λ) ensure (42), t5 =

hmax
{
m+ degλ Ũ11(λ), degλ Ũ21(λ)

}
. We write system (1), (43):

(
I2n+r+l − D̃(λ)

) [ ẋ(t)

ẋ3(t)

]
=

[
A(λh) 0n×(n+r+l)

0(n+r+l)×n 0(n+r+l)×(n+r+l)

] [
x(t)

x3(t)

]

+

[
B(λh) 0n×(n+r+l)

0(n+r+l)×r In+r+l

]
v(t), t > t5.

(44)

Due to the condition D̃(0) = 0(2n+r+l)×(2n+r+l), system (44) has neutral type; in view of (42), it
also satisfies the condition of Lemma 2.

Let us specify the initial condition x3(t) = ϕ3(t), t ∈ [t5 − h3, t5], where ϕ3 ∈ C1
(
[t5 − h3, t5],

R
n+r+l

)
is any function and h3 = hmax

{
degλ W̃13(λ),degλ W̃23(λ)

}
.

For system (44) we add the output signal

y1(t) =

[
C(λh) 0l×(n+r+l)

0(n+r+l)×n In+r+l

] [
x(t)
x3(t)

]
, (45)

where y1(t) = col[y(t), x3(t)]. Clearly, system (44), (45) satisfies the conditions of Theorem 1.

Let v(t) = 0, t � t6, in system (44). For t > t6, we construct the loop v according to the scheme
of Section 3.1 but for system (44), (45). The number t6 is appropriately chosen to fulfill the
smoothness requirement described in Remark 2.

Remark 6. In several cases, there may exist a polynomial matrix Ũ(λ) such that
∣∣In −D(λ)−

λB(λ)Ũ (λ)C(λ)
∣∣ ≡ 1. Then, to reduce the size of the matrices of the finite stabilization output-

feedback controller, we should take the inner loop controller in the form ũ(t) = p
D
Ũ(λh)y(t) + v(t)

instead of (43). In this case, the output (45) is replaced by the output (3), whereas the variable x3
and the corresponding blocks in (44) disappear (see the example below).

Example 1. We demonstrate the method of constructing a finite stabilization controller of the
form (4) (see the proof of Theorem 1) on an example of system (1), (2) with h = ln 2 and the
matrices

D(λ) =

[
λ+ λ2 0
λ2 0

]
, A(λ) =

[
1− λ 1
0 0

]
, B =

[
1
1

]
, C(λ) =

[
1 + λ, 0

]
. (46)

In this case, the conditions of Theorem 1 are valid. In accordance with Remark 6, we find

ũ(t) = p
D

[
λh

]
y(t) + v(t), t > t5 = 2h. (47)

(Here, [λh

]
is a matrix of dimensions 1× 1.)

For the case (46), (47), system (44), (45) takes the form(
I2 −

[
0 0

−λh 0

])
ẋ(t) =

[
1− λh 1

0 0

]
x(t) +

[
1
1

]
v(t), y(t) =

[
1 + λh, 0

]
x(t), t > t5. (48)
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Interpreting it as system (1), (2), we follow steps 1)–3) of Section 3.1.

1. The controller (11) is constructed as described in [22]:

v(t) =

[
−2

3
λ3
h + λ2

h +
8

3
λh − 2, −2

3
λ2
h + λh −

4

3

]
x(t)

+

[
λ3
h −

7

2
λ2
h +

7

2
λh − 1

]
x̄(t),

˙̄x(t) =

[
−4

9
λ2
h +

10

9
λh +

8

3
,
4

9
λh +

10

9

]
x(t) +

[
2

3
λ2
h − 3λh +

7

3

]
x̄(t).

(49)

Consider system (48) closed with the controller (49). The characteristic matrix W0(p, λ) (see (14))
has the form

W0(p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p+ 1 +
2

3
λ3 − λ2 − 5

3
λ

2

3
λ2 − λ+

1

3
−λ3 +

7

2
λ2 − 7

2
λ+ 1

pλ+
2

3
λ3 − λ2 − 8

3
λ+ 2 p+

2

3
λ2 − λ+

4

3
−λ3 +

7

2
λ2 − 7

2
λ+ 1

4

9
λ2 − 10

9
λ− 8

3

4

9
λ− 10

9
p− 2

3
λ2 + 3λ− 7

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

Direct verification shows that d0(p) = p3 − p. To investigate pointwise degeneracy we can apply,
e.g., [29, Theorem 1.1]. Let us briefly illustrate this process. The elements of the first two rows of
the matrix adjoint to the matrix W0(p, e

−ph) in (50) vanish on the roots of the polynomial d0(p);

therefore, the elements of the first two rows of the matrix
(
W0(p, e

−ph)
)−1

are integer functions. This
property implies [29] pointwise degeneracy in the directions [1, 0, 0] and [0, 1, 0], i.e., condition (12)
holds. The maximum degree of the variable λ in these rows does not exceed 5, so t̄1 = 5h.

2. We construct the finite observer (24), (32). In the case under consideration,

DL(λ) =

⎡⎢⎢⎢⎢⎢⎣
λ 0 −λ

2

0 0 0

1 + λ 0 −λ

2

⎤⎥⎥⎥⎥⎥⎦ , Π(λ) =

⎡⎢⎢⎢⎣
λ

2
+ 1 0 −λ

2

0 1 0

1 + λ 0 1− λ

⎤⎥⎥⎥⎦ ,

C̃(λ) =

⎡⎢⎢⎢⎢⎢⎣
λ2

2
+

3

2
λ+ 1 0

−λ2

2
− λ

2
0

0 0

⎤⎥⎥⎥⎥⎥⎦ , Cy(λ) =

⎡⎢⎢⎢⎢⎢⎣
−λ2

2
+

λ

2
+ 1

λ2

2
− λ

2
0

⎤⎥⎥⎥⎥⎥⎦ ,

V2(λ) =

[
0 −1 0
0 0 0

]
, (i0 = 2).

System (23) takes the form

χ̇(t) =

[
1 1
0 0

]
χ(t) +

[
1
1

]
u(t), ỹ2(t) =

[
−λ2

h

2
− λh

2
, 0

]
χ(t). (51)
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Using (51), we finally arrive at the relations (24), (32):

ż(t) = Q(pD, λh)z(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−λ2
h

2
+

λh

2
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
y(t) +

⎡⎢⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦u(t),

x(t) =

⎡⎣ λh

2
+ 1 0

0 1

⎤⎦ z1(t) +

⎡⎣ λh

2
0

⎤⎦ y(t).

Here are the elements of the matrix Q(p, λ) located in blocks nos. (1,2) and (2,2):

g11(λ) = 0, g21(λ) = 0, g31(p, λ) = −1,

g41(p, λ) =
428 259 827 248

370 825 875
+

13 308 418

37 975
p+

3263 970 139

410 130
pλ2 − 64 061 677 864 590 419

683 506 252 800
λ7

− 4 504 350 207 517

370 825 875
λ+

10314 197

36 325 800
λ14 +

109 094 554 247 916 287

683 506 252 800
λ6

− 17 328 104 121 953 0591

854 382 816 000
λ5 − 5 199 361 041 200 909

379 725 696 000
λ9 +

47137 018 631 639 513

1 139 177 088 000
λ8

+
1145 930 623 773 433

341 753 126 400
λ10 − 3631

605 430
λ15 − 21 985 862 341

3 645 600
pλ5 +

460 650 668 593

43 747 200
pλ4

− 154 784 798 249

13 124 160
pλ3 +

255 035 489 398

4 944 345
λ2 +

3925 747 081

1 749 888
pλ6 − 90 876 950 917

15 256 836 000
λ13

− 1 159 012 171

2 187 360
pλ7 − 1 743 623 839 315 721

14 239 713 600
λ3 +

30878

315
p2 +

222 361

2520
p2λ4

− 433 453

1008
p2λ3 +

819 967

1008
p2λ2 − 718 133

1260
p2λ− 3 824 219 437

1 367 100
pλ− 3631

630
p2λ5

+
160 864 251 357 763 979

854 382 816 000
λ4 − 101 487 682 282 697

170 876 563 200
λ11 − 3 412 403

585 900
pλ9 +

3631

19 530
pλ10

+
2474 356 747

32 810 400
pλ8 +

4478 040 783 667

61 027 344 000
λ12,

g51(λ) = − 7 991 397 801 907 001

3 218 768 595 000
λ+

430 769 061 660 938 381

51 500 297 520 000
λ4 − 90 522 930 353 255 419

794 576 018 880 000
λ9

+
7882 042 993 003 211

397 288 009 440 000
λ10 +

38819 644 979 750 780 339

11 124 064 264 320 000
λ6

+
5294 886 380 912 311 157

11 124 064 264 320 000
λ8 − 16 491 589 988 451 048 767

11 124 064 264 320 000
λ7

− 2 550 527 148 568 185 769

309 001 785 120 000
λ3 − 68 686 980 782 797

28 377 714 960 000
λ11

+
440 289 519 864 500 737

77 250 446 280 000
λ2 − 7 699 195 015 471 454 567

1 236 007 140 480 000
λ5 +

3631

18 768 330
λ14

− 384 159

41 707 400
λ13 +

30684 351 847

157 653 972 000
λ12 +

23072 498 192 986

44 705 119 375
,
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g̃12 = 0, g̃22 = 2,

g42(p, λ) = −22 963 886

1 177 225
− 6049

1085
p− p2 − 237 550 583

1 367 100
λ− 113 747

1260
pλ+

1277 029 067

607 600
λ2

+
1419 991

2520
pλ2 − 1 644 438 853

234 360
λ3 − 817 177

1008
pλ3 +

92476 221 137

8 202 600
λ4 +

2164 661

5040
pλ4

− 14 100 715 427 003

1 356 163 200
λ5 − 6 890 671

78 120
pλ5 +

131 464 618 651

21 873 600
λ6 +

3631

630
pλ6

− 3 920 013 073

1 749 888
λ7 +

1930 062 779

3 645 600
λ8 − 2 473 263 067

32 810 400
λ9 +

105 765 593

18 162 900
λ10 − 3631

19 530
λ11,

g52(λ) =− 36 874 722 147

5 109 156 500
− 2 362 315 264 557

20 436 626 000
λ+

20884 081 349 269

61 309 878 000
λ2

− 538 059 413 076 769

1 103 577 804 000
λ3 +

1793 665 758 154 211

4 414 311 216 000
λ4

− 1 445 125 981 988 557

6 621 466 824 000
λ5 +

1026 288 639 816 701

13 242 933 648 000
λ6

− 8 405 817 164 119

472 961 916 000
λ7 +

1174 407 170 347

472 961 916 000
λ8 − 106 666 081

563 049 900
λ9

+
3631

605 430
λ10,

g43(λ) = −63

4
λ5 +

651

8
λ4 − 1395

8
λ3 +

651

4
λ2 − 63λ+ λ6 + 8,

g53(λ) = − 1

31
λ5 +

31

60
λ4 − 155

56
λ3 +

155

24
λ2 − 31

4
λ+

3879

1085
.

(The form of the other elements is obvious.)

In this case, d1(p) = (p− 2)(p − 1)p(p + 1)(p + 2)(p + 3) (see (28)). By [29, Theorem 1.1], the
first 4 components of system (30) are degenerate.

3. Now we write the matrices of the finite stabilization controller (34)–(36) for system (48):

R00(p, λ) =
[
− 1

3
λ4 +

1

2
λ3 +

4

3
λ2 − λ

]
, R01(p, λ) =

[
λ3 − 7

2
λ2 +

7

2
λ− 1

]
,

R02(p, λ) =
[
− 1

3
λ4 − 1

6
λ3 +

7

3
λ2 +

5

3
λ− 2,−2

3
λ2 + λ− 4

3
, 0, 0, 0

]
,

R10(p, λ) =
[
− 2

9
λ3 +

5

9
λ2 +

4

3
λ
]
, R11(p, λ) =

[2
3
λ2 − 3λ+

7

3

]
,

R12(p, λ) =
[
− 2

9
λ3 +

1

9
λ2 +

22

9
λ+

8

3
,−4

9
λ+

10

9
, 0, 0, 0

]
,

R22(p, λ) = Q(p, λ), K(λ) = col
[
0, 0,

1

2
λ2 − 1

2
λ, 0, 0

]
.

We compose the characteristic matrix W1(p, λ) of the closed loop system (48), (34)–(36) (see the
proof of Proposition 1). Direct verification shows that

∣∣W1(p, λ)
∣∣ = d1(p)d0(p). By [29, Theo-

rem 1.1], components nos. 1, 2, 4–7 of system (48), (34)–(36) become degenerate in time 16h.
(Here, 16 is the maximum degree of the variable λ of the polynomials representing the elements of
the matrices of the controller (4).) Step 3) is completed. In this case, ρ0 = 2; letting ρ1 = 2 and
t4 = 4h in Lemma 2, we observe that it is possible to take t6 = t5 + t4 + 4h = 10h since m0 = 2
(see Lemma 2). Finally, the finite stabilization output-feedback controller is given by formula (38),
and t1 = t6 + 16h = 26h can be set in the identity (6).
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4. CONCLUSIONS

In this paper, we have derived an existence criterion for a finite stabilization output-feedback
controller as well as have proposed its design method. Conditions (7) and (8) represent [25, p. 206;
32] a complete 0-controllability criterion for system (1), (2) (a complete damping/calming criterion
for this system). Conditions (9) and (10) are [25, p. 204; 32] represent a final observability criterion
for system (1), (2) (i.e., the existence of a single-valued continuous operator for reconstructing
the state of system (1) by the past output (2)). Thus, a finite stabilization output-feedback con-
troller exists iff system (1), (2) is both completely 0-controllable and finally observable. The design
procedure of a finite stabilization output-feedback controller is based on the methods for construct-
ing controllers and observers [22, 25, 31], which involve algebraic operations implemented in most
modern computer mathematics systems. Therefore, it is possible to automate the computational
procedures proposed above when developing automatic control systems.
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APPENDIX

Proof of Lemma 1. If for any initial function ϕ in (3) there exists a control input u (a pro-
grammed or feedback law) ensuring (6), then system (1) is completely 0-controllable. Hence [32],
conditions (7) and (8) are necessary. Let us establish the necessity of condition (9). Supposing the
existence of a finite stabilization output-feedback controller of the form (4), we assume on the con-
trary that condition (9) is violated for some p0 ∈ C. Choosing a vector g0 ∈ C

n as the solution of the
algebraic system W (p0, e

−p0h)g0 = 0, C(e−p0h)g0 = 0, we define the function xp0(t) = Re
(
g0e

p0t
)
,

t � −mh, if it is nonzero and xp0(t) = Im
(
g0e

p0t
)
, t � −mh, otherwise.

The controller (4) ensures the identity (6) regardless of the initial conditions (3) and (5). We
set ϕ(t) = xp0(t), t ∈ [−mh, 0], and ϕ̃(t) = 0, t ∈ [t0 − h̃, t0], in (3) and (5), respectively. The
characteristic matrix of system (1), (4) is given by

W1(p, λ) =

[
W (p, λ)−B(λ)U11(p, λ)C(λ) −B(λ)U12(p, λ)

−U21(p, λ)C(λ) pIñ − U22(p, λ)

]
, (A.1)

where e−ph = λ. From (A.1) it follows that the function col[xp0(t), 0], t > t0, is a nonzero solution
of the closed loop system (1), (4). This obviously contradicts (6).

Now we show the necessity of condition (10). By the definition of a finite stabilization output-
feedback controller, the spectrum of the system is finite,

∣∣W1(p, λ)
∣∣ = w(p), where w(p) is a poly-

nomial. Consider the auxiliary system(
In − Φ0(λh)

)
ξ̇(t) = Φ(λh)ξ(t) + Ψ(λh)ū(t), t > 0, (A.2)

where Φ0(λ) =
(
D(λ)

)′
, Φ(λ) =

(
A(λ)

)′
, Ψ(λ) =

(
C(λ)

)′
, and ū is a piecewise continuous control

input. The initial conditions for system (A.2) are chosen similarly to those of (3).

For system (A.2) we define the controller

ū(t) = H11(pD
, λh)ξ(t) +H12(pD

, λh)x̃(t),

˙̃x(t) = H21(pD , λh)ξ(t) +H22(pD , λh)x̃(t),
(A.3)

where Hi1(p, λ) =
(
B(λ)U1i(p, λ)

)′
and Hi2(p, λ) =

(
U2i(p, λ)

)′
, i = 1, 2. Let Wξ(p, λ) denote the

characteristic matrix of system (A.2), (A.3). It is easy to see that Wξ(p, λ) =
(
W1(p, λ)

)′
, so
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−ph)

∣∣ = w(p). Thus, there exists a feedback law for system (A.2) such that the closed loop
system has a finite (but not a priori given) spectrum, i.e., it is spectrally reducible. Therefore [15],
the condition rank

[
In − Φ0(λ), Ψ(λ)

]
= n ∀λ ∈ C holds, which is equivalent to (10). The proof of

Lemma 1 is complete.

Proof of Statement 1. The characteristic matrix W1(p, e
−ph) of system (1), (2), (34)–(36) is

given by

W1(p, λ) =

⎡⎢⎢⎣
W (p, λ)−B(λ)R00(p, λ)C(λ) −B(λ)R01(p, λ) −B(λ)R02(p, λ)

−R10(p, λ)C(λ) pIn1 −R11(p, λ) −R12(p, λ)

−(K(λ)+B(λ)R00(p, λ))C(λ) −B(λ)R01(p, λ) pIn2 −R22(p, λ)−B(λ)R02(p, λ)

⎤⎥⎥⎦, (A.4)

where λ = e−ph.

We represent the variable x2 in the relations (34)–(36) as a vector with two vector components:
x2 = col[x21, x22], where x21 ∈ R

n and x22 ∈ R
3. Also, we partition the matrices Ri2(p, λ), i = 1, 2,

and K(λ) in (37) into blocks corresponding to the components x21 and x22 and write them in an
expanded form:

R02(p, λ) =
[
L00(p, λ)Π11(λ), 0r×3

]
, R12(p, λ) =

[
L10(p, λ)Π11(λ), 0n1×3

]
,

R22(p, λ) =

[
A(λ)Π11(λ) + Vi0(λ)C̃(λ) Q12(p, λ)

Q21(p, λ) Q22(p, λ)

]
, K(λ) =

[
K0(λ)

−K1(λ)

]
.

(A.5)

Here, the blocks Q12(p, λ) ∈ R
n×3[λ], Q21(p, λ) ∈ R

3×n[λ], and Q22(p, λ) ∈ R
3×3[λ] correspond to

the block partition of the matrix Q(p, λ) in (29) (the first upper block of the matrix (29) is the
matrix AV (λ) described by (22)), and K1(λ) = col[1, 0, 0]ẽ′i0Cy(λ) (27).

Remark 7. Below it will be necessary to write the matrices partitioned into blocks. To fit them
on the page width, thus making the considerations more visual, we will occasionally omit arguments
in the notation of matrix blocks. For example, entries like B and L00Π11 will indicate B(λ) and
L00(p, λ)Π11(λ), respectively.

Using the block partition (A.5) and the definitions of the matrices K0(λ) (22) and B(λ) (26),
we write the matrix (A.4) as

W1(p, λ) =

⎡⎢⎢⎢⎣
W +BL00Π12C −BL01 −BL00Π11 0n×3

L10Π12C pIn1 −L11 −L10Π11 0n1×3

BL00Π12C+(AΠ12+Vi0Cy)C −BL01 pIn−AΠ11−Vi0C̃−BL00Π11 −Q12

K1C 03×n1 −Q21 pI3−Q22

⎤⎥⎥⎥⎦. (A.6)

In system (1), (2), (34)–(36), let us introduce a new variable ε as follows:

x21(t) =
(
In −D(λh)

)
x(t) + ε(t), t � t0. (A.7)

The change of variables (A.7) can be defined by the formulas⎡⎢⎢⎢⎢⎣
x(t)

x1(t),

x21(t)

x22(t)

⎤⎥⎥⎥⎥⎦ = Ω(λh)

⎡⎢⎢⎢⎢⎣
x(t)

x1(t),

ε(t)

x22(t)

⎤⎥⎥⎥⎥⎦ , Ω(λ) =

⎡⎢⎢⎢⎢⎣
In 0n×n1 0n×n 0n×3

0n1×n In1 0n1×n 0n1×3

In −D(λ) 0n×n1 In 0n×3

03×n 03×n1 03×n I3

⎤⎥⎥⎥⎥⎦ ,
∣∣Ω(λ)∣∣ ≡ 1.

Due to these formulas, the matrix W1(p, λ)Ω(λ) will be the characteristic matrix obtained after the
system replacement, and

∣∣W1(p, λ)
∣∣ = ∣∣W1(p, λ)Ω(λ)

∣∣.
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Further transformations of the matrix W1(p, λ)Ω(λ) require some relations. Note preliminarily
that the definition of the matrices Πij(λ) implies

Π11(λ)
(
In −D(λ)

)
−Π12(λ)C(λ) = In. (A.8)

Next, in the matrix (A.6), we add block no. (3,3) multiplied on the right by the matrix
(
In −D(λ)

)
to block no. (3,1). Using formula (A.8), we have the following chain of equalities:

B(λ)L00(p, λ)Π12(λ)C(λ) +
(
A(λ)Π12(λ) + Vi0(λ)Cy(λ)

)
C(λ)

+
(
pIn −A(λ)Π11(λ)− Vi0(λ)C̃(λ)−B(λ)L00(p, λ)Π11(λ)

)(
In −D(λ)

)
= B(λ)L00(p, λ)Π12(λ)C(λ) +A(λ)Π12(λ)C(λ)

+Vi0(λ)

[ (
Il + C(λ)Π12(λ)

)
C(λ)(

In −D(λ)
)
Π12(λ)C(λ)

]
+ p

(
In −D(λ)

)
−A(λ)Π11(λ)

(
In −D(λ)

)
− Vi0(λ)

⎡⎣ C(λ)Π11(λ)
(
In −D(λ)

)((
In −D(λ)

)
Π11(λ)− In

)(
In −D(λ)

)
⎤⎦

−B(λ)L00(p, λ)Π11(λ)
(
In −D(λ)

)
= −B(λ)L00(p, λ) + p

(
In −D(λ)

)
−A(λ)

+Vi0(λ)

⎡⎣ C(λ) + C(λ)
(
Π12(λ)C(λ)−Π11(λ)

(
In −D(λ)

))
(
In −D(λ)

)(
Π12(λ)C(λ)−Π11(λ)

(
In −D(λ)

))
+

(
In −D(λ)

)
⎤⎦

= W (p, λ)−B(λ)L00(p, λ).

(A.9)

Then, in the matrix (A.6), we add the first row of block no. (4,3) multiplied on the right by the
matrix

(
In −D(λ)

)
to the first row of block no. (4,1). (Note that the remaining two lower rows of

the above blocks are zero, which follows from (29) and the form of the matrix K1(λ).) Using the
intermediate reasoning in the chain of equalities (A.9), we arrive at the relation

[1, 0, 0]K1(λ)C(λ)− [1, 0, 0]Q21(p, λ)
(
In −D(λ)

)
= ẽ′i0

([(
Il + C(λ)Π12(λ)

)
C(λ)(

In −D(λ)
)
Π12(λ)C(λ)

]
−

⎡⎣ C(λ)Π11(λ)
(
In −D(λ)

)((
In −D(λ)

)
Π11(λ)− In

)(
In −D(λ)

)
⎤⎦⎞⎠ = 0.

(A.10)

Due to formula (A.8) and the relations (A.9) and (A.10),

W1(p, λ)Ω(λ) =

⎡⎢⎢⎢⎢⎣
W −BL00 −BL01 −BL00Π11 0n×3

−L10 pIn1 − L11 −L10Π11 0n1×3

W −BL00 −BL01 pIn −AΠ11 − Vi0C̃ −BL00Π11 −Q12

03×n 03×n1 −Q21 pI3 −Q22

⎤⎥⎥⎥⎥⎦ .

In the matrix W1(p, λ)Ω(λ), we multiply the first row of blocks by (−1) and add it to the third row,
replacing the third row of blocks with the result. Let Ω1 denote the matrix of this transformation.
Obviously,

∣∣Ω1

∣∣ = 1 and

Ω1W1(p, λ)Ω(λ) =

⎡⎢⎢⎢⎢⎢⎣
W −BL00 −BL01 −BL00Π11 0n×3

−L10 pIn1 − L11 −L10Π11 0n1×3

0n×n 0n×n1 pIn −AΠ11 − Vi0C̃ −Q12

03×n 03×n1 −Q21 pI3 −Q22

⎤⎥⎥⎥⎥⎥⎦

=

[
W0(p, λ) W̃ (p, λ)

0(n+1)×(n+n1) pIn+3 −Q(p, λ)

]
,

(A.11)
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where the block W̃ (p, λ) is defined straightforwardly. The structure of the matrix (A.11) shows
that the function col[ε, x22] is defined by a system with the characteristic matrix In+3 −Q(p, λ)
(i.e., by system (30), which is pointwise degenerate). Therefore, e′icol[ε(t), x22(t)] ≡ 0, t � t0 + t̃2,
i = 1, n + 2. So, for t � t̄4, we have t̄4 = t0 + t̃2 + γ5h, where γ5 is the maximum degree of the
variable λ in the block W̃ (p, λ), and the function col[x, x1] is defined by a homogeneous system
with the characteristic matrix (14), which is also pointwise degenerate. Hence, for t1 = t̄1 + t̄4,
where t̄1 is given by (12), the identities ē′icol[x(t), x1(t)] ≡ 0, t � t1, hold. In combination with (A.7),
this result implies the pointwise degeneracy of system (1), (2), (34)–(36).

Due to the form of the matrix Ω1W1(p, λ)Ω(λ) in (A.11) and equalities (28) and (13), the
eigenvalues of system (1), (2), (34)–(36) are determined by the roots of the polynomial d1(λ)d0(λ).
The proof of Proposition 1 is complete.

Proof of Lemma 2. Let us introduce the new variable X(t) =
(
In −D(λh)

)
x(t), t � 0, in sys-

tem (1). Then x(t) = ΠD(λh)X(t), t � hdegλ ΠD(λ), and the function X(t) is defined by the
delayed system

Ẋ(t) = A(λh)ΠD(λh)X(t), t > hm0. (A.12)

As is known, the smoothness of the solution of the delayed system (A.12) increases by one when
increasing the time variable by the value m0h. Therefore, for the given number ρ1 and t � m0h+
(ρ1 − 1)m0h = ρ1m0h, the function X(t) is such that X ∈ C̃ρ1

(
[ρ1m0h,+∞),Rn

)
, and the desired

conclusion follows. The proof of this lemma is complete.

Proof of Lemma 3. By condition (10), there exist [15; 25, p. 228] polynomial matrices Mij(λ)
and Kij(λ) of appropriate dimensions such that∣∣∣∣∣In −D(λ)− λB(λ)M11(λ) −λB(λ)M12(λ)

−λM21(λ) Ir − λM22(λ)

∣∣∣∣∣ ≡ 1,

∣∣∣∣∣In −D(λ)− λK11(λ)C(λ) −λK12(λ)

−λK21(λ)C(λ) Il − λK22(λ)

∣∣∣∣∣ ≡ 1.

(A.13)

We define the matrices

Ũ11(λ) = 0r×n, Ũ12(λ) =
[
λM12(λ), λM11(λ), 0n×l

]
,

Ũ21(λ) =

⎡⎢⎣ 0(r×n)

−λK11(λ)

−λK21(λ)

⎤⎥⎦ ,

Ũ22(λ) =

⎡⎢⎣ λM22(λ) λM21(λ) 0r×l

λB(λ)M12(λ) D(λ) + λK11(λ)C(λ) + λB(λ)M11(λ) λK12(λ)

0l×r λK21(λ)C(λ) λK22(λ)

⎤⎥⎦ .

Note that Ũij(0) are zero matrices. Let us denote

Γ(λ) = E
(
I2n+r+l − D̃(λ)

)
E−1, where E =

⎡⎢⎢⎢⎣
In 0n×r 0n×n 0n×l

0r×n Ir 0r×n 0r×l

−In 0n×r In 0n×l

0l×n 0l×r 0l×n Il

⎤⎥⎥⎥⎦ .
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Direct verification shows that

Γ(λ) =

⎡⎢⎢⎢⎣
In −D(λ)− λB(λ)M11(λ) −λB(λ)M12(λ) −λB(λ)M11(λ) 0n×l

−λM21(λ) Ir − λM22(λ) −λM21(λ) 0r×l

0n×n 0n×r In −D(λ)− λK11(λ)C(λ) −λK12(λ)

0l×n 0l×r −λK21(λ)C(λ) Il − λK22(λ)

⎤⎥⎥⎥⎦ .

In view of the identities (A.13), we conclude that
∣∣Γ(λ)∣∣ ≡ 1, and the relation (42) is immediate.

The proof of this lemma is complete.
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